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Abstract

Reverse-time migration (RTM) is a wave-equation based
imaging technique that is capable of dealing with multi-
path arrivals and image very steeply dipping reflectors and
overhangs. Images produced by the migration of seismic
data related to complex geology are often contaminated
by artifacts due to the presence of internal multiple
reflections. The multiple reflections are interpreted as
the main coherent noise in seismic data, and therefore,
strategies to remove this noise have been developed,
such as the Marchenko multiple elimination (MME) by
the least-squares scheme (LSMME). On the other hand,
the employed zero-lag imaging condition between the
forward-in-time modeled source wavefield and the back-
propagated receiver wavefield, aside from constructing the
subsurface image, also gives rise to artifacts, generated
by the undesired cross-correlation of backscattered waves.
A large part of these RTM artifacts can be suppressed by
directionally decomposing wavefields before imaging. So,
we are proposing a procedure in which the artifacts present
in the conventional RTM are mitigated using the LSMME
scheme (in the data domain) and applying a causal image
condition (in the model domain). To demonstrate the
performance of our proposed strategy, we apply it to a
2D numerical example and compare the result with that
obtained by the conventional RTM of the original dataset.
From the RTM results, we show that the application of both
techniques allows the construction of seismic images free
of these undesired artifacts.

INTRODUCTION

The use of the seismic reflection method for the study
of the interior of the planet is a common practice in the
hydrocarbon industry, since with this method it is possible
to illuminate regions with kilometers of depth and in high
resolution. This study is carried out through the analysis
of migrated sections that are constructed using standard
seismic migration techniques, such as reverse-time
migration (RTM) (Baysal et al., 1983; McMechan, 1983)
or Kirchhoff migration. A drawback of these methods is
that they rely on the single-scattering assumption, i.e.,
the recorded seismic data do not include waves that are
reflected more than once in the subsurface before reaching

the receivers. These reflections are referred to as internal
multiple reflections and are known as the main coherent
noise present in the seismic reflection data. The fact that
the presence of internal multiple reflections is disregarded
during the generation of seismic images through standard
imaging methods can lead to the generation of false events
in the migrated sections. Therefore, some techniques
have been proposed to mitigate the artifacts related to
the internal multiples, whose traditional workflow consists
of predicting the internal multiples and subtracting them
from the acquired seismic data. However, with the
recent development of the Marchenko equations, several
alternatives have been presented for the treatment of
these noises. It is important to mention the work of van der
Neut and Wapenaar (2016), where the coupled Marchenko
equations are rewritten by projecting the focusing points
back to the acquisition surface and presented a scheme to
eliminate internal multiple reflections from the measured
acoustic wavefield. The main issue with this scheme is
that its implementation requires information related to the
macro velocity model to create time truncations.

Zhang and Staring (2018) modified the aforementioned
scheme and proposed the method called Marchenko
multiple elimination (MME), which is a data-driven
algorithm. Later, Zhang et al. (2019) used the work
of Zhang and Staring (2018) to derive a scheme that
eliminates internal multiple reflections and applies
compensation for transmission losses contained in primary
reflections. These results suggest that the MME scheme
may be the best alternative to eliminate internal multiples
when the seismic data has previously gone through
a high-quality pre-processing stage, i.e., deghosting,
removal of free-surface multiples, and deconvolution with
an estimated source wavelet. Zhang and Slob (2020b)
used a laboratory dataset to evaluate the performance
of the MME, obtaining a dataset free of internal multiple
reflections. Zhang and Slob (2019a) presented the first
example of applying the MME on a field dataset from the
Norwegian North Sea, which validated the capabilities
of the MME scheme and showed that it can effectively
eliminate internal multiples without model information or
adaptive subtraction. Zhang and Slob (2020a) developed a
fast implementation version that reduces the computational
cost of the conventional MME by one order of magnitude.
Santos et al. (2020b) took advantage of the fact that
the MME scheme is a data-driven algorithm and shown
that is possible to apply it in early seismic processing
workflows, allowing to calculate NMO velocity fields by
picking the semblance free from the effects of multiples.
Recently, Santos et al. (2020a) have proposed to formulate
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the application of the MME scheme as a least-squares
problem (LSMME) that guarantee the convergence
criterion of the Neumann series approximation, which is
the proposed solution in the original formulation.

The application of the LSMME scheme allows eliminating
the ghost reflectors caused by the internal multiple
reflections. Nevertheless, another major drawback of RTM
is strong artifacts related to the imaging condition applied
to construct the reflectivity image. The conventional
imaging condition for RTM is the zero-lag cross-correlation
of the source and receiver wavefields. The resulting image
obtained by applying the conventional cross-correlation is
always contaminated by low-frequency artifacts and false
reflectors, which are generated due to the presence of
sharp wave-speed contrasts in the velocity model and the
undesired cross-correlation of backscattered waves. In
recent years, more attention has been given to improve
the imaging condition and reduce the low-frequency noise.
Different techniques have been proposed in the literature
(Baysal et al., 1984; Yoon and Marfurt, 2006; Fletcher
et al., 2006; Guitton et al., 2007). A practical approach is
to apply the Laplacian filter (Zhang and Sun, 2009), which
shows good attenuation of RTM artifacts without hurting
steeply dipping reflectors, but it can damage the signal of
interest (Guitton et al., 2007).

Another way to address this type of migration artifact
is to modify the imaging condition. In this direction, Liu
et al. (2011) proposed an imaging condition based on the
decomposition of the wavefield into one-way components.
The imaging condition introduced by Liu et al. (2011)
only allows wave components that propagate in opposite
directions to be correlated. This method is an implicit
separation that successfully removes many types of
artifacts without the need of applying the Laplacian filter.
To address the wavefield separation, we usually define the
wave-propagation direction in the Fourier domain. In the
frequency-wavenumber domain, the wave-propagation is
defined by the sign of the frequency and the wavenumber
(Hu and McMechan, 1987; Liu et al., 2011). If we use
the conventional wavefield decomposition method in the
time-domain RTM, we should store the wavefield and
perform Fourier transform along the time axis. This
process increases the input/output cost because the time
axis is the slowest dimension of the stored wavefield and
Fourier transform operates most efficiently on data that are
stored contiguously. But, if we can define a time-domain
wavefield whose spectrum only contains a positive or
negative frequency, we can define the wave-propagation
direction using the sign of the spatial wavenumber and
avoid the I/O cost. This signal is the analytical signal which
is a complex signal whose real part is the signal itself and
its complex part is the Hilbert transform of the real part.
For RTM, we extend the analytic signal concept and call it
the analytical wavefield.

In the work of Shen and Albertin (2015) the imaginary
part of the analytical wavefield is obtained applying a
temporal Hilbert transform to the source term of the
wave-equation followed by conventional propagation.
The wavefield propagated with conventional source
and the wavefield generated by its Hilbert transform,
constitute the analytical wavefield. Recently, Revelo and
Pestana (2019) proposed an alternative method based

on the first-order partial equation in time and by just
solving the wave equation once. This strategy improves
the computation of wavefield separation. Because the
analytical wavefield only contains positive frequencies,
the down- and up-going wave components can then
be conveniently obtained by applying 1D Fourier filters
in depth. Shen and Albertin (2015) propose a causal
imaging condition that correlates the down-going source
component with the up-going receiver component for
subsurface imaging, which successfully removed many
types of RTM artifacts presented in the images obtained
from conventional cross-correlation imaging condition.

Based on the fact that conventional RTM image contains
artifacts caused by multiple internal reflections and the
imaging condition applied to generate the migration
section. In this paper, we combined the LSMME
scheme and the causal RTM, to attenuate multiple
internal reflections and generate a seismic image of
high quality and artifacts-free due to backscattered
energy, respectively. A numerical example is given to
demonstrate the validity of the proposed procedure and
the effectiveness of the causal imaging condition in RTM
images using as input the retrieved dataset by LSMME
scheme. Finally, some conclusions are drawn.

THEORY

The LSMME scheme

We present a brief review of the LSMME scheme proposed
in Santos et al. (2020a). For the notation in this work,
the spatial coordinates are defined by their horizontal and
depth components, for instance, xi = (xH ,zi), where xH
are the horizontal coordinates and zi is the depth of an
arbitrary boundary ∂Di, such that the surface acquisition
∂D0 will be defined by x0 = (xH ,z0). The acoustic impulse
reflection response from a source at x0 (recorded by a
pressure receiver at x′0) is denoted as R(x′0,x0, t), where t is
the propagation time. The reflection response is represent
by R(x′0,x0, t). In practice, R is obtained from deconvolution
of R with the source time signature. The projected version
of the revised Marchenko equations, for the single-sided
reflection response, is given by the following expressions
in operator form (Zhang and Staring, 2018){

v+m(x
′
0,x
′′
0 , t) =

(
Θ

t2−ε
ε R∗v−

)
(x′0,x

′′
0 , t),

v−(x′0,x
′′
0 , t) =

(
Θ

t2−ε
ε Rδ +Θ

t2−ε
ε Rv+m

)
(x′0,x

′′
0 , t),

(1)

U−(x′′0 ,x
′
0, t) =

(
Θ

∞
t2−ε Rδ +Θ

∞
t2−ε Rv+m

)
(x′′0 ,x

′
0, t), (2)

where U− is the projected version of the upgoing
component of the Green function, and v+m and v−

are named as the down and upgoing filter functions,
respectively. The truncation operator Θ

t2−ε
ε excludes values

outside of the window (ε, t2−ε), where ε is a positive value
to account for the finite bandwidth and t2 is the two-way
traveltime of the acquisition surface ∂D0 and a fictitious
reflector at horizon ∂Di. The multidimensional convolution
and correlation integral operators, applied on an arbitrary
wavefield P(x,x′′, t), are defined as

{RP}(x′′,x′, t) =
∫

∂D
dx
∫ +∞

−∞

R(x′,x, t ′)P(x,x′′, t− t ′)dt ′, (3)

{R∗P}(x′′,x′, t) =
∫

∂D
dx
∫ +∞

−∞

R(x′,x,−t ′)P(x,x′′, t− t ′)dt ′.

(4)
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As explained in Zhang and Staring (2018) and Zhang and
Slob (2019b), Eq. 2 allows the evaluation of U−(x′′0 ,x

′
0, t)

for each time instant t2. Then, if U−(x′′0 ,x
′
0, t2) is convolved

with the source wavelet, its value at t2 can be collected
to be stored in a new function Rt , which will contain only
primary reflections

Rt(x′′0 ,x
′
0, t = t2) =U−(x′′0 ,x

′
0, t2), (5)

where the overbar indicates quantities that have been
convolved with the source wavelet. The process could be
applied for time instant t2 in the interval 0≤ t2 ≤ tmax (where
tmax represents the maximum time recorded in the data
set), and the function Rt will store all primary reflections
free of multiples. The solution of Eq. 1 based on Neumann
series approximation is known as the conventional MME
scheme (Zhang et al., 2019). The resulting internal
multiple-free reflection response can serve as input for
further processing, such as RTM technique.

The computation of U− demands first obtaining v+m .
Santos et al. (2020a) have shown that v+m can be obtained
if Eq. 1 is formulated as an inverse problem, which can be
solved using the least-squares scheme (LS). Then, taking
into account that {Rδ}(x′′0 ,x′0, t) = R(x′′0 ,x

′
0, t) (van der

Neut and Wapenaar, 2016), Eq. 1 can be rewritten in the
following matrix form[

v−

v+m

]
=

[
ΘR+ΘRv+m
ΘR∗v−

]
, (6)

and after some algebraic manipulations, we formulate Eq.
6 as a linear system in the form Ax = y[

I −ΘR

−ΘR∗ I

]
︸ ︷︷ ︸

A

[
v−

v+m

]
︸ ︷︷ ︸

x

=

[
ΘR

0

]
︸ ︷︷ ︸

y

. (7)

Solving Eq. 7 allows us to obtain v+m , which is substituted
into Eq. 2 to compute U−. To solve the linear system
(Eq. 7) we have applied an iterative damped least-squares
method (Paige and Saunders, 1982), with a damping factor
set to 10−2. In this method, the elements of A are applied
as operators, so it is not necessary to build the referred
matrix. The solution of Eq. 1 based on a least-squares
scheme is referred to as LSMME, which does not require
to satisfy a stability criterion, unlike the conventional MME
scheme.

The conventional and causal imaging condition

The governing imaging condition for acoustic RTM is
defined by the zero-lag cross-correlation of the source
wavefield (PS) with the receiver wavefield (PR). This
imaging condition is defined as follows

Icc(x) =
∫ T

0
PS(x, t) PR(x, t) dt (8)

where x = (x,z) denotes the spatial coordinate, T is
the maximum time recorded and Icc is known as the
conventional imaging condition. However, the application
of Eq. 8 generally produces an image contaminated
by strong RTM artifacts, which are generated by the
undesired cross-correlation of head waves, diving waves,

and backscattered waves (Yoon and Marfurt, 2006).

An important approach that has been used to suppress
RTM artifacts due to backscattered waves is to modify the
imaging condition, which allows us to distinguish between
the reflection and transmission images. In this way, Revelo
and Pestana (2019) used a causal imaging condition that
correlates the down-going component of the source, P+

S ,
with the up-going component of receiver wavefield, P−R , as
proposed by Shen and Albertin (2015)

Icausal(x) =
∫ T

0
P+

S (x, t) P−R (x, t) dt, (9)

where the + direction is defined away from the source.
This imaging condition correlates wavefields only in points
in space that correspond to seismic reflectors, generating
the reflection image and avoiding RTM artifacts.

To obtain the individual components involved in Eq.
9, we use a via plane-wave-based decomposition scheme
(Shen and Albertin, 2015; Revelo and Pestana, 2019), for
which it is necessary to introduce the analytical wavefield.
The complex wavefield is defined as P̂ = P(x, t)+ iQ(x, t),
where Q(x, t) = H{P(x, t)} and H{·} is the Hilbert transform
operator. For general media, this complex pressure
wavefield P̂ satisfy a first-order partial equation in time
(Zhang and Zhang, 2009). A conventional procedure to
compute the analytical wavefield was proposed by Shen
and Albertin (2015), but in their case the wave equation
has to be solved twice, once for the source and another
for the Hilbert transformed source. Revelo and Pestana
(2019) presented an improved method to calculate the
analytical wavefield stably and free of dispersion noise,
using just a single propagation and based on the rapid
expansion method (REM) (Pestana and Stoffa, 2010).
Now, the source wavefield is extrapolated in time and for
each time step the first-order time derivative is computed
and then the Hilbert transform of the wavefield is obtained
by applying the following relation between Q and P (Zhang
and Zhang, 2009)

Q(x, t) =
1
L

∂P(x, t)
∂ t

, (10)

where L is a pseudo-differential operator in the space
domain, defined by L = v(x)

√
−∇2 and ∇2 is Laplacian

operator. Its symbolic representation is L = v(x)
√

k2
x + k2

z

where kx and kz are the wavenumber components and v(x)
is the propagation velocity in the medium.

In the causal imaging condition the down-going component
of source wavefield, P+

S , and the up-going component
of receiver wavefield, P−R , are correlated to obtain the
resulting imaging using Eq. 9. To obtain individual
wavefield components involved in Eq. 9, following Shen
and Albertin (2015), we use a Fourier transform in depth
of the analytical wavefield considering mono frequency
components (Liu et al., 2011). The down-going component
of source wavefield, P+

S , in space and time, becomes

P+
S (x,z, t) = FFT−1

z
{

κ(kz)FFTz
[
P̂S(x,z, t)

]}
, (11)

where,

κ(kz) =

{
0 if kz ≥ 0
1 if kz < 0 (12)
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and P̂S is the source analytical wavefield. The up-going
receiver wavefield component in forward time, P−R , is
obtained using the analytical receiver wavefield in Eq. 11
and replacing κ by 1− κ in Eq. 12. In this paper, we
apply a Hann window on Eq. 12 to smooth the filter, so
the vertical stripes over the entire panel due to the FFT of
discontinuous functions are attenuated.

In summary, in our implementation, we are proposing
to use the LSMME scheme to retrieve the dataset
free of internal multiple reflections. After that, the
LSMME output dataset is migrated, using RTM, and
the causal imaging condition is applied based on the
method proposed by Revelo and Pestana (2019). Thus,
combining both techniques, we can effectively suppress
the undesired RTM artifacts, which are typically present in
the conventional RTM results.

NUMERICAL EXAMPLE

In the following, we use a 2D synthetic model to illustrate
the benefits of the procedure proposed in this work.
The acoustic velocity model is composed of flat layers
and a reservoir zone (Figure 1). The model consists
of 1751× 2627 grid nodes with 2m grid spacing. The
synthetic acoustic impulse reflection responses, for a fixed-
spread geometry, are generated with a finite-difference
time-domain modeling code (Thorbecke and Draganov,
2011), and the input source signature is approximately a
sinc function with a flat spectrum of unitary amplitude. We
apply absorbing boundaries on all sides, i.e., we assume
that surface-related multiples and ghost wave effects are
removed from the recorded dataset. The direct wave in the
recorded data was removed by modeling it separately in a
homogeneous medium (values of the first layer) and then
subtracting it from the recorded data. We simulated the
single-sided reflection responses with 526 sources and a
fixed-spread geometry that ranges from −2626 to 2626m
with a 10m distance between sources and also between
receivers, which are located at the top of the model. The
duration of each shot record is 3.204s sampled at 4ms.
It is important to note that the operators R and R∗ are
applied by using the impulse reflection responses. For the
application of the LSMME scheme and the RTM algorithm,
the synthetic acoustic reflection responses are obtained
from the convolution of R with a Ricker source wavelet with
a central frequency of 20Hz.
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Figure 1: Velocity model.

Figure 2a shows the central shot (purple star in Figure

1), where we can see the presence of internal multiple
reflections that were marked by the red arrows. We use
the computed single-sided impulse reflection responses as
input to solve Eqs.1 and 2 through the LSMME scheme.
The number of iterations for the LSMME technique is set
at 20. Figure 2b shows the retrieved reflection response
without internal multiples using the aforementioned method
for the central shot gather. This result clearly shows that
the most of internal multiple reflections in Figure 2a were
attenuated as a result of the application of the LSMME. The
orange and blue dashed lines in Figure 2a-b represent the
zero-offset trace positions that were selected for a more
detailed analysis. In Figure 2c we perform a comparison
between these traces, and we can see that the LSMME
scheme correctly eliminates the events associated with
internal multiple reflections and that the primary reflections
coincide well, thus preserving their amplitude and phase. A
similar result was also presented in Santos et al. (2020a),
where it is shown that the LSMME scheme is capable
of maintaining the characteristics of the primary events,
attenuating only the multiple noises.
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Figure 2: (a) The modeled reflection response and (b) the
retrieved reflection response using the LSMME scheme.
(c) The comparison of zero-offset traces.

Continuing with our analysis, a synthetic modeling is
presented to validate the method to construct the analytical
wavefield and apply the causal imaging condition. Figure
3a shows the pressure snapshot at 1.4s of an acoustic
wavefield due to a 20Hz-peak-frequency Ricker-wavelet
source located at the origin of the coordinate system
(purple star in Figure 1) with a time sampling of 4ms. Figure
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3b shows the imaginary part, Q, of the analytical wavefield
obtained by using a single wave-equation solution, through
the REM method. We take as input the analytical wavefield
(Figure 3a-b) and perform the explicit wavefield separation
using Eqs. 11 and 12. A 20-point Hann window is also
applied to remove vertical stripes artifacts. Figures 3c and
3d show the up-going component (reflected waves) and the
down-going component (transmitted waves), respectively.
With these results, we demonstrate that the analytical
wavefield, as well as the unidirectional components of the
acoustic wavefield are constructed, and therefore can be
used in the application of causal RTM.
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Figure 3: Snapshots for source wavefield at t = 1.4s for
the real and complex parts and for the up- and down-going
wavefields.

In the following, we apply the RTM without and with
up-down wavefield decomposition using as input the
original reflection responses and the retrieved dataset
by the LSMME scheme. A comparison between the
migrated images is shown in Figure 4. In the conventional
migration results, dominant low-wavenumber artifacts are
generated, which are introduced by the cross-correlation
of the back-scattered fields. Figure 4a-b shows the RTM
results obtained by conventional correlation imaging
condition followed by application of the Laplacian filter and
also the RTM results using the causal imaging condition
(Figures 4c and 4d). The image in Figure 4a contains
artifacts (indicated by the red arrows and ellipse) from
internal multiple reflections because they are imaged
as if they were primary reflections. Furthermore, it is
observed that the reflected interbeds are artificially imaged
by the conventional imaging condition (marked by the blue
arrows and rectangle), mainly on top of the fourth reflector.
However, the image in Figure 4b, which are obtained from
the retrieved dataset, are free of artifacts caused by the
internal multiples, but still with the presence of the false
reflectors built in the conventional RTM.

Figures 4c and 4d are results obtained applying the
causal imaging condition, where the input data for the RTM
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Figure 4: RTM results images, (a)-(c), using the modeled
reflection responses and (b)-(d) the recovered primary
reflections by the LSMME scheme. (a) and (b) are images
obtained by applying the conventional cross-correlation
and (c) and (d) by the causal imaging condition.

algorithm was the original dataset and the internal multiple-
free reflection responses, respectively. We should notice
that these results have a better quality compared to
Figures 4a and 4b and that the artifacts above the fourth
interface, as well as those indicated by the blue arrows, are

17th International Congress of the Brazilian Geophysical Society



REMOVING RTM ARTIFACTS: APPLICATION TO SYNTHETIC DATA 6

removed by directionally decomposing wavefields before
imaging. Comparing the causal RTM results, in Figure
4d we no longer have the artifacts related to the internal
multiple reflections. These results confirm the successful
application of RTM when using LSMME filtering, combined
with the computation of the analytical wavefield which
allows us to separate the wavefield for application of the
causal imaging condition shows the effectiveness of the
implemented algorithm for removing artifacts (Figure 4d)
usually seen in a typical RTM (Figure 4a).

CONCLUSIONS

Reverse-time migration can produce accurate images of
the subsurface. However, the resulting image can be
contaminated by artifacts related to the internal multiple
reflections or to the conventional correlation-based imaging
condition. Therefore, the data resulting from high-quality
processing and a correct imaging condition must be
applied to remove artifacts from RTM images. In this
paper, we have presented a procedure that combines two
efficient schemes to improve the migrated sections. In
the data domain, we implemented the LSMME scheme
to filter the multiple internal reflections. The RTM result,
using as input the retrieved dataset, shown that the
application of this method contributes to generating a
better image, free of ghost reflectors caused by the
internal multiples. Furthermore, in the model domain, we
implemented and demonstrated that the causal imaging
condition can effectively remove the undesired artifacts
and low-frequency noise produced by the cross-correlation
imaging condition. We then performed causal RTM on
the LSMME dataset. From this migrated image, we
demonstrated that the application of both schemes has
produced high-quality results when compared with the
conventional RTM of the original dataset.
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